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Abstract

Three-axis satellite attitude determination and active stabilization systems have been

designed and tested using both flight experiments and simulation studies.  These are being

developed for use on low-Earth-orbiting nano-satellites.  Such satellites can be used as elements

of constellations that implement synthetic aperture radar or that serve as nodes in a

communications network.  The research has addressed the problems of under-sensing and under-

actuation that are present in magnetic-based systems.  Magnetometer outputs are insensitive to

rotation about the local Earth magnetic field, and magnetic torque coils cannot produce torque

along the field direction.  A new attitude representation and a special globally-convergent

extended Kalman filter have been used to solve the 3-axis attitude estimation problem.  The

efficacy of this system has been demonstrated using data from two missions, the Hubble Space

Telescope and the Far-Ultraviolet Spectroscopic Explorer.  Semi-active global 3-axis

stabilization has been demonstrated using a simplified magnetometer output feedback control law
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in combination with weak passive stabilization of two axes.  The passive stabilization can come

from a very small momentum wheel or from a new aerodynamic system.  The momentum-wheel-

based concept has been successfully tested on the TechSat Gurwin II spacecraft.

1.0 Introduction

1.1 Goals of Research

This research had two goals.  One was to develop and test attitude determination and

stabilization systems that are appropriate for use on small satellites that constitute parts of

constellations.  The other was to develop high-fidelity MATLAB simulations of open-loop and

closed-loop satellite attitude dynamics.

The new attitude estimation and stabilization systems use the Earth's magnetic field for

sensing and actuation.  Magnetometer sensing and magnetic torque coil actuation are attractive for

use on small satellites in Low Earth Orbit (LEO) because of these devices' light weight, low

power consumption, and high reliability.  They are difficult to use, however, because they are two-

axis devices.  Geometry and physics dictate that magnetic systems provide sensing and actuation

only about the two axes that are perpendicular to the local magnetic field.  The estimation and

feedback stabilization problems, on the other hand, are concerned with all three attitude angles,

i.e., roll, pitch, and yaw, and with all three attitude rates.  Fortunately, the magnetic field moves

with respect to inertial space in most LEO applications.  This motion makes the 3rd axis

observable and controllable in a theoretical sense.  Practically, however, robustness issues can

militate against the exploitation of observability and controllability because typical estimators and

controllers that exploit these properties rely on dynamic models of uncertain validity.  The main

goal of this part of the research has been to overcome these limitations and create full 3-axis
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estimation and stabilization systems based only on magnetics.  A second goal has been to prove the

techniques by testing them on actual spacecraft.

The MATLAB attitude simulation software has been designed to provide a highly flexible

high-fidelity means of testing new concepts for attitude determination and control systems.  The use

of open-source MATLAB .m-files creates flexibility.  The incorporation of a variety of disturbance

torque models causes the simulation to be high-fidelity.  These models include torques due to

gravity-gradient effects, residual magnetic dipole moments, solar radiation pressure, Earth albedo

radiation pressure, and aerodynamic drag and lift.  These torque models take into account the

details of the spacecraft's geometry and inertial properties, and they include the physics of how the

Earth's gravitational field, the upper atmosphere, solar radiation, and the Earth's albedo act on the

spacecraft's components.

1.2 Relationship of Research to Needs of Air Force and Department of Defense Programs

The results of this research are relevant to the Air Force's mission because they advance the

state of the art of attitude estimation, stabilization, and control for small spacecraft.  These systems

are practical for use on small spacecraft because they reduce the number, weight, and power of the

sensors, actuators, and passive stabilization devices that are needed.  Such systems would be ideal

for a constellation of small, simple, light-weight LEO spacecraft.

Attitude determination and pointing accuracies on the order of several degrees have been

demonstrated via flight-experiments, post-flight data processing, and simulation.  These accuracies

are achievable in the presence of significant disturbance torques and system modeling errors.

These levels of accuracy will enable the design of very small, light-weight spacecraft that have

performance capabilities which can be exploited to perform missions such as remote sensing or

establishment of a communications network.
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1.3 Summary of this Project's Efforts and Accomplishments

Four efforts have been pursued during the grant period.  The first attempted to test a local

magnetic-torquer-based attitude controller on the TechSat Gurwin II spacecraft 1.  The

performance of an existing controller at near-zero momentum bias has been demonstrated, but the

new local controller could not be tested because of actuator-sensor cross-talk problems when the

momentum wheel was stopped.  The near-zero momentum bias test was significant because it

showed that momentum bias designs can be implemented using momentum wheels that store 70 to

200 times less angular momentum than is typically used in current practice for a spacecraft of

similar dimensions.

The second effort developed a globally convergent attitude and rate estimator that uses only

magnetometer data.  This new estimator has been tested successfully using simulation data and

using actual flight data from NASA's Hubble Space Telescope (HST) and Far-Ultraviolet

Spectroscopic Explorer (FUSE) missions.

The third effort sought to develop globally convergent magnetic-torquer-based attitude

controllers.  One approach was based on a projection of Mortensen's globally stable control law 2

onto the subspace perpendicular to the magnetic field.  Simulations showed that this controller

works for the nearly symmetric TechSat Gurwin II spacecraft, but a global convergence proof

could not be derived.  An alternate approach attempted to expand on Holden and Lawrence's 3

Lyapunov-based nutation damper.  This attempt failed because there are significant disturbance

torques that cause Lyapunov stability to break down when the spacecraft attempts to point towards

nadir.  Preliminary work was done on a sliding-mode-type global controller, but this work could

not be completed before the grant ended.
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The fourth effort has been the development of a MATLAB spacecraft attitude dynamics

simulation package.  This package has been used in conjunction with the other three efforts as an

evaluation tool.

1.4 Outline of Report

The remainder of this report consists of 3 sections.  Section 2 gives a break down of the

personnel involved on the project and describes the publications that are being prepared based on

this work.  Section 3 presents significant results from the different studies that have been carried

out as part of this project.  Section 4 is a summary of this report.

2.0 Personnel and Publications

Five different researchers have been involved in this project.  Prof. Mark Psiaki, the

principal investigator, is a faculty member in Cornell's Sibley School of Mechanical and

Aerospace Engineering.  The other four investigators are all associated with the Asher Space

Research Institute at the Technion in Haifa, Israel.  They are Prof. Moshe Guelman, Dr. Alexander

Shiryaev and Roni Waller, both of whom are research engineers, and Mark Rozanov, who was an

undergraduate in the Technion's Faculty of Aerospace Engineering during the grant period.  Prof.

Psiaki worked on development of the linearized control laws for testing on the Technion's TechSat

Gurwin II spacecraft, he developed the new 3-axis attitude determination algorithm and the

MATLAB attitude dynamics simulation, he tested the attitude determination algorithm, and he

carried out the attempts to develop a globally stabilizing magnetic controller.  Prof. Guelman and

Dr. Shiryaev helped to design the various controllers that were flight tested on the TechSat Gurwin

II spacecraft, they oversaw the tests, and they evaluated the results.  Mr. Waller wrote the flight

software for the flight tests, conducted the actual tests, and collected telemetry data from the tests.
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Mr. Rozanov assisted in simulation-based evaluation of flight controllers as they were being

developed.

Two archival publications are planned based on this work.  The first describes the

magnetometer-based 3-axis attitude determination system and presents test results using actual

flight data 4.  It is currently in preparation.  The second paper will report on a new

aerodynamic/magnetic active 3-axis attitude stabilization system for use below 500 km altitude.

Some of the work on this latter topic was performed under different support, but this planned

publication is being cited here for two reasons.  First, this new system uses a magnetometer-to-

magnetic-torquer feedback control law that is very similar to the one which has been used on the

TechSat Gurwin II spacecraft during the flight experiments.  The success of these flight

experiments was the primary reason why this control law was incorporated into the new system.

Second, the new system's drag-based passive pitch-yaw stabilization system was designed based

primarily on the aerodynamic torque simulation that was developed under this grant.

3.0 Research Results

3.1 Experimental Demonstration of Low-Momentum-Bias Magnetic Attitude Control

Although the experimental flight-test program did not produce all of the desired results, it

demonstrated a significant advance in the state of the art of attitude control: the ability to do 3-axis

stabilization of a momentum-bias spacecraft with a very low momentum bias.  A momentum bias

spacecraft is a nadir-pointing spacecraft that includes a pitch-axis angular momentum wheel in

order to establish gyroscopic roll-yaw stability.  Typical designs use a momentum wheel whose

angular momentum is 70 to 200 times as large as the angular momentum that results from the pitch

inertia and the nominal once-per-orbit pitch-axis rotation rate 5,6.  As part of the present work, the

TechSat Gurwin II spacecraft has been controlled successfully with a momentum bias that is only
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0.9 times the nominal pitch angular momentum.  This value is more than 75 times smaller than the

next smallest momentum bias that is reported in the literature.

This performance has been achieved by using the TechSat's compass magnetic attitude

controller.  It is a time-varying output feedback controller.  It compares the spacecraft-axes

measured magnetic field vector time history to the reference time history that would result if the

attitude were correct.  The error vector gets fed back to the magnetic torque rods using a simple

PD control law.  It is called the compass algorithm because the proportional control terms

effectively implement a compass-needle-type stabilization.  The magnetic torque directly stabilizes

the two axes that are perpendicular to the magnetic field via a high-bandwidth feedback loop.  The

axis that is parallel to the field gets stabilized by the momentum wheel because the field rotates

with respect to inertial coordinates as the spacecraft progresses along its orbit.  Any non-zero

error along the field eventually forces the momentum wheel to precess about an axis that is

perpendicular to its spin axis, but the wheel resists precession in a way that tends to null out

attitude errors which are parallel to the field.

The relevance of this work to Air Force and civilian missions is that it allows the use of

smaller momentum wheels.  This will make momentum-bias designs more practical on micro- and

nano-satellites because they will not need to devote a significant fraction of their bus weight and

power to the momentum wheel due to its greatly reduced size.

The results of this study are more thoroughly reported in Appendix A of this report.  This

appendix contains the final sub-contractor report that has been submitted to Cornell University by

the Technion.
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3.2 Globally-Convergent 3-Axis Attitude and Rate Estimation Based only on Magnetometer

Data

A globally convergent attitude determination filter has been developed to estimate 3-axis

attitude and attitude rate from magnetometer data only.  The attitude determination algorithm uses

implicit Euler dynamics to propagate attitude rate estimates.  It expands on the iterated extended

Kalman filter (EKF) concept in order to deal with the important nonlinearities.  In addition, it uses

a global initialization strategy that starts with a number of filters which cover the 2-dimensional

box of significant initial condition uncertainty.  Hypothesis testing is used to eliminate all but one

of the filters after the best one has reached steady state.

The new filter works with a special attitude representation.  This representation starts with

the minimum-rotation quaternion that aligns the inertial magnetic field with the measured magnetic

field in spacecraft coordinates.  The attitude is parameterized by 3 quantities that define a rotation

from this quaternion to the true spacecraft attitude.  One attitude parameter is a rotation about the

magnetic field, which can be large.  The other two parameters are rotations perpendicular to the

magnetic field, which are guaranteed to be small.  The smallness of these latter two angles

guarantees that the representation avoids its singularity.

The principal uncertainties in attitude and attitude rate are in the direction of rotation about

the instantaneous magnetic field vector, and the unique parts of this filter have been developed to

address this issue.  The iterated EKF linearizes with respect to the small unknown rotations that

are perpendicular to the magnetic field, but it performs a global numerical least-squares

optimization with respect to the unknown rotation about the magnetic field.  This numerical

optimization involves the nonlinearities of both the measurement model and the dynamics model.

The global initialization strategy starts multiple filters at grid points that span a square in the two-
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dimensional space of the unknown rotations about the magnetic field at the first two measurement

samples.  If the grid is chosen fine enough, then one of the filters will start with an initial condition

that is close to the true attitude and rate.  This filter will produce the smallest cumulative cost in its

square-root information filter least-squares cost function, and this cost can be used to identify that

filter's initial grid point as the most reasonable hypothesis about the initial conditions.

This filter has been tested off-line using data form the HST and FUSE missions.  Steady-state

attitude and rate accuracies on the order of 4 deg and 50 arcsec/sec 3-σ have been achieved on

FUSE, Fig. 1.  There are hopes to achieve even better accuracies with improved magnetic torque

rod data.  HST accuracies are believed to be on the order of 8 deg and 20 arcsec/sec 3-σ.  It is not

possible to ascertain the true HST accuracy because there is no "truth" standard from an accurate

measurement system for the HST data sets, which were taken from a time in late 1999 when HST

was operating in its zero-gyro sun-pointing mode due to rate-gyro failures.

This filter could be important to almost any Air Force or civilian mission.  Almost all

spacecraft carry a magnetometer.  This filter provides a robust full 3-axis back-up mode attitude

and rate determination capability that will be useful in the likely event that other sensors may fail,

sensors such as rate gyros, horizon scanners, sun sensors, or star trackers.  More importantly, this

system could be chosen to serve as the primary attitude determination system for a low-weight,

low-budget, low-accuracy mission such as a single element of a large constellation of spacecraft.



10

Fig. 1. Attitude error time histories for the globally convergent magnetometer-based

attitude estimator when operating on FUSE data.

3.3 Aerodynamic/Active-Magnetic Stabilization of a Nano-Satellite

Work on the drag torque model, when coupled with a project at Cornell do design a 1 kg

nano-satellite, has lead to a new 3-axis attitude stabilization design.  The genesis of the design

came from the fact that aerodynamic drag torque tends to overwhelm all other environmental

torques at altitudes of 400 km and below.  This was the target altitude range for the Cornell nano-

satellite.  The original design planned to use gravity-gradient stabilization for the roll and pitch

axes, but it proved difficult to design a light-weight system that did not get overwhelmed by the

aerodynamic drag torque about the pitch axis.

The new design turns the drag torque into an asset rather than a liability.  It stabilizes yaw

and pitch by using a badminton-birdie type configuration, one like that pictured in Fig. 2.  The

basic principal of operation is the same as that of a birdie:  A pitch or yaw rotation will vary the
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frontal area of each "feather," which changes its net drag force.  Pitch and yaw rotations also

modulate the effective moment arm of each "feather's" drag force as measured with respect to the

center of mass.  These variations cause restoring torques about the pitch and yaw axes.  The

"birdie's" deployable "feathers" can be made out of thin, light-weight strips of metal or Kevlar that

resemble the tape in a carpenter's retractable tape measure.

Fig. 2. Badminton-birdie-type spacecraft pitch-yaw stabilization system configuration.

The actual torque produced has been calculated using a panel model of the main spacecraft

and the feathers.  An aerodynamic model valid at high-Knudsen number has been used 7.  It

computes the pressure and tangential stress on each surface as functions of the dynamic pressure,

the air-relative velocity direction in spacecraft-referenced coordinates, the dimensionless airspeed
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and down-wash as non-dimensionalized by the upper atmosphere's thermal energy, and the

spacecraft's surface temperature.

An active magnetic damping and roll stabilization system has been developed for the birdie-

type spacecraft in order to achieve full 3-axis nadir-pointing stabilization.  The aerodynamic

torque provides no roll stiffness and almost no damping.  The active magnetic controller makes up

for these deficiencies.  It is an output feedback system that is very much like the TechSat Gurwin

II's COMPASS control law, which is defined in eq. (14) of Appendix A.  The birdie's controller

compares the measured magnetic field in spacecraft coordinates with the magnetic field in local-

level coordinates.  It feeds back any error through a proportional-integral-derivative control law

that drives the magnetic torque rods' dipole moment vector.  The goal of this controller is to align

the spacecraft coordinate system with the local-level coordinate system so that the spacecraft will

point towards nadir.  This controller has been shown to produce global three-axis stability if two

axes are passively stabilized.  The roll and yaw axes are passively stabilized by the momentum

wheel in the case of TechSat Gurwin II's nominal attitude stabilization system.  In the case of the

birdie system, the aerodynamic torque provides the necessary passive stabilization to the pitch and

yaw axes.

A simulation study has demonstrated that this system provides global 3-axis stabilization and

that it can counteract the expected disturbance torques.  The principal disturbance torques are

gravity-gradient torques, pitch and yaw drag torques due to center-of-mass imbalance, and roll

torques due to shape asymmetry (twist of the feathers) and slight aerodynamic lift effects.  Global

stabilization can be achieved for altitudes up to 500 km.  A typical plot of the transient decay from

tumbling motion to 3-axis stabilized motion is shown in Fig. 3.
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Fig. 3. Closed-loop "birdie" transient attitude response starting from an initial tumble

of 3o/sec in roll, -4o/sec in pitch, and 2o/sec in yaw.

4.0 Summary

New satellite attitude determination and active stabilization methods have been developed

for use on constellations of small satellites.  These methods make use of magnetic sensing and

actuation in order to reduce the weight and power of the required components.  The resulting

under-sensed/under-actuated estimation and control problems have been addressed using concepts

from modern control theory.

A successful 3-axis attitude determination system has been developed by working with a new

attitude representation that has been specially tailored to separate the easy and hard parts of the

estimation problem.  The system is a custom-designed iterated extended Kalman filter.  It

incorporates a hypothesis-testing strategy that enables it to achieve global convergence, which is
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necessary for autonomous operation.  This system has been successfully tested using flight data

from NASA's HST and FUSE missions.  Its 3-σ accuracy is on the order of 4 deg per axis, and

better accuracy may be achievable with improved dynamic models and improved magnetometers.

Active magnetic control laws have been developed to globally stabilize all 3 axes of a nadir-

pointing spacecraft despite the under-actuated nature of the problem.  Successful designs have

been tested, both in-flight aboard the TechSat Gurwin II spacecraft and via simulation.  In addition

to active magnetic stabilization, these designs require weak passive stabilization of two axes.  One

design uses a very low momentum pitch wheel for passive roll-yaw stabilization.  A second design

uses a new passive aerodynamic pitch-yaw stabilization system.  This latter system is based on the

concept of a badminton birdie and can be used at altitudes below 500 km.  Only the former system

has been tested in actual flight.

A high fidelity attitude dynamics simulation has also been developed.  This simulation

includes a panel model of the aerodynamic and solar-radiation pressure torques.  It has been used

to test all of the system concepts that have been considered under this grant.
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Abstract

A study was performed on control algorithms intended to provide three-axis stabilization of a satellite, equipped

with a magnetometer as the only sensor, and three-axis magneto-torquers as the only actuators. Two different

attitude control algorithms were considered, namely Linear Quadratic Regulator and No Wheel controller. The

ability of these algorithms to achieve the required performance was tested by multiple numerical simulations, under

various initial conditions and different scenarios. The   implementation of the new controllers onboard the TechSat

satellite proved to be a complicated task, mainly because of insufficient pre-flight testing of the onboard equipment,

which resulted in the inability to build up an adequate model of the perturbing torques affecting the satellite's

attitude dynamics. Still, important results were obtained both on control laws able to provide three-axis stabilization

of the satellite even with a very small momentum bias as well as the ability to implement very efficient Kalman

filters, to fully estimate the satellite's attitude, as confirmed by TechSat actual flight tests.
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Acronyms

BF – Body Frame

GE – Ground Estimator

GMF  – Geomagnetic Field

IF – Inertial Frame

EKF – Extended Kalman Filter

LKF – Linear Kalman Filter

LQR– Linear Quadratic Regulator

MGM – Magnetometer

MW – Momentum Wheel

PMC – Purely Magnetic Control

TF – Trajectory Frame
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1. Introduction

   The scope of the report is implementation and flight tests of a purely magnetic satellite's attitude control (PMC)

algorithms that use a magnetometer (MGM) as the only sensor, and 3-axis magneto-torquer (MTQ) as the only

actuator. Generally, in order to achieve high stabilization precision, in the satellite's attitude control systems (ACS)

magneto-torquers are working together with other actuators, such as momentum or reaction wheels.  The latter

devices being costly and subject to failure, the advantages provided by the ACS without wheels are its cost-

efficiency and reliability. Furthermore, after having been tested and proven effective, such PMC algorithm could be

considered as a contingency ACS option of the magnetically controlled satellites.

     Two approaches to the PMC design, namely Linear Quadratic Regulator (LQR) and No Wheel algorithms, are

further set forth. According to the simulations, both of them can provide a good 3-axis stabilization of a satellite

without the MW. Yet, as will be shown later, their implementation onboard the TechSat satellite is still a

complicated problem.

2.  LQR  Controller [1]

2.1 Derivation of the control law

The dynamic system, represented by the satellite rotating under both control and environmental

torques, can be described by the vector-matrix equation, as follows:

wBuBxAx w++=& (1)

x  is the process state vector,

,,,,, 




= ??f??fx &&& (2)

where, ,, ??f  are  Euler angles, that define the attitude of the satellite's Body Frame (BF) with respect to

Trajectory Frame (TF) in the order 3 →1 →2 rotation sequence, u  is the control input, and w  the process noise

(disturbance vector).

This equation is generally nonlinear. It can be linearized, if the satellite's Body Frame (BF) rotation with respect to

Trajectory Frame (TF) is slow enough.

In the specific case of magnetic control,

b m = u × (3)

with m =(mx,my,mz) - the magnetic control dipole moment, created by MTQ, and b =(bx,by,bz) - the environmental

GMF vector along the satellite orbit.
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For this case the dynamic system is defined by,
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Here,

w0         -  orbital mean motion,

Ixx, Iyy, Izz    -  satellite principal moments of inertia,

s 1,s 2,s 3                   -  dimensionless moments of inertia:

s 1  ≡ (Iyy-Izz)/Ixx ;    s 2 ≡ (Izz-Ixx)/Iyy ;    s 3 ≡ (Ixx-Iyy)/Izz .

In (4), the BF axes are assumed to be collinear with principal axes of the satellite's ellipsoid of inertia. This

assumption can be relaxed; in the latter case the involved matrices should include the effects of inertia products.

The linearized dynamical model, represented by (4), includes gravity-gradient, magnetic control, and disturbance

torques. It can be re-written in the following form:

wwBmtBxAx ++= )(
~~& (4')

In Equation (4'), the only matrix depending on time is the control effectiveness matrix )(
~

tB , its variations being

caused by those of the GMF components.  Moreover, the time variation of (4') can be approximated as periodic

function, since )()( Ttbtb +≈ , where T=2p/w0 is the orbital period, the major deviation from the strict periodicity

being caused by the tilt of the geomagnetic dipole's axis from that of the Earth rotation.

The design of the control law, stabilizing the system (4'), was based on the periodic Linear Quadratic Regulator

(LQR) technique [1,5].  The problem in question can be formulated as follows:
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For t∈[0, T], for the equation

mtBxAx )(
~~

+=&

with  )0(x  given, find a linear control law

)()( txKtm −= (5)

with gain matrix K, to minimize the cost function

{ } )()(
2
1

)()()()(
2
1

0

TxPTxtdtRmtmtQxtxJ T
T

T
TT ++= ∫ (6)

where Q and R are constant matrices, and PT is the terminal state weighting matrix. As known, the solution to this

problem can be found in the form of a state-feedback control law:

)()()(
~

)( 1 txtPtBRtm T−−= (7)

with P(t) being the solution to the time-dependent matrix Riccati equation. For PT appropriately chosen, the resulting

P would be periodic, with period T.  This leads to a periodic gain,

)()(
~

)()( 1 tPtBRTtKtK T−−=+= (8)

In case of the magnetic attitude control, it is better to express the gain in the form (8), instead of computing its time

history. What's more, in the control effectiveness matrix )(
~

tB of (4'), the MGM measurements can be substituted,

to make the computed gain compensated for the uncertainties in the GMF model.

In case P(t) is a constant matrix: P(t)=Pss, the control law (7) would be even more simple for use in a real system,

without the need to keep the whole matrix time history. Furthermore, a constant Pss would not need to have its time

variations synchronized with the actual time variations in )(
~

tB .

Once calculated, the Pss matrix can be used in the control law

ss
T PtBRK

xKm

)(~
where,

1−−=

−=
(9)

To eliminate the steady-state effects of the disturbances, the enlarged state vector [ ]xzxaug ,=  was introduced

instead of x , with z  being a 3×1 vector of integrals of the attitude errors:

∫ ==
t

ii itdtxtz
0

3,2,1,)()( . (10)

Then the augmented model equation will acquire the following form,
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w
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= × 0

)(~
0

~
0

0,[0 33& (11)

with matrices ),(
~

,
~

tBA and BW the same as in (4').

2.2 Control implementation by PWM technique

Each one of the three TechSat MTQ dipoles can have one of three possible values of magnetic moment:

Msat, 0,  -Msat (12)

where  Msat ≈1Amp⋅m2 is the MTQ dipole saturation value. The total number of feasible standard dipole

combinations (vectors) for 3-axis MTQ is thus equal to 26.

Furthermore, to prevent the distortion of MGM measurements by MTQ functioning, magnetic field measurements

and MTQ actuation are separated in time. Within each second, 0.3 seconds are allotted for measurements, and the

rest for control.

In order to adequately approximate the required control dipole moment m by the permissible MTQ dipole moments

(12), a PWM technique is applied. According to it, the dipole moment, to be created by the MTQ, is kept constant

during the whole controller decision cycle, e.g. one minute. Once per minute, a table of 600 lines and 3 columns is

filled out, each line containing a set of 3 standard dipole moments for every tenth of a second. This table should be

built up so as the actual dipole moment created by the MTQ during a minute to be as close as possible to the

required one.
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Example 1. If )1(m = 0.027 Amp·m2, then the contents of the table's 1st column are set as follows:

Time (s) m(1)

0.1 1

0.2 1

0.3 1

0.4 1

0.5 1

0.6 1

0.7 1

0.8 0

0.9 0

1.0 0

1.1 1

1.2 1

1.3 1

1.4 1

1.5 1

1.6 1

1.7 1

1.8 0

1.9 0

2.0 0

2.1 1

2.2 1

2.3 0

… 0

60.0 0

So the actual dipole moment will be

           m(1)=16/600=0.026666 Amp·m2 .

After a number of simulations, three improvements were added to this algorithm:

1. It is not recommended to have MTQ working during a too large part of a minute, to prevent an excessive change of

the satellite attitude, before the next decision would be taken, and the new cycle would start.
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Example 2: Let the required dipole moment m  be (0.5, 0, 0). According to aforesaid, an x-axis MTQ dipole should

be actuated for 30 seconds within a given minute. Still, after having this done, the resulting change of the angular

velocity would be

            dt
I

Bm
dt

I
Bm

dt
I
u

w
)~()( ×

≈
×

==∆  1sec005.0
~

−=
⋅

= dt
I

Bm

where

              

2

5

2

5.1

30

105.2

1~

mkgI

dt

TeslaB

mAmpm

s

⋅=

=

⋅=

⋅=
−

To prevent such an effect, a limitation was imposed on the possible number of seconds the dipoles can be turned on.

This number - Tmax  - was chosen equal to 10s for the x- and z-axis dipoles, and to 30s for the y-axis dipole. This

automatically limits the maximum value of the control dipole, obtainable within a minute (saturation value):

            2
2

max
max 0.1167]   0.3500,   0.1167,[

1
mAmp

t
mAmptT

U
pwm

in ⋅=
⋅⋅⋅

=

where

   tin    = 0s.7- part of a second eligible for control,

   tpwm = 60s - controller decision cycle.

2. In case if, due to the saturation, any of the required dipoles gets larger than corresponding maxU  component, m

is changed as follows:

For x- or z-axis dipoles:

m(1) = C⋅m(1),

 m(3) = C⋅m(3),

where

C = 










)3(

)3(
,

)1(

)1(
max

maxmax U

m

U

m

For y-axis dipole:

m(2) = sign(m(2))⋅Umax(2) .
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3. Additional fine-tuning of the control can be achieved by calculating the difference between m , and the actual

MTQ dipole moment m~ , and adding it to m , as required for the next minute.

Example 3. Let m(i) required at the nth minute be equal to 0.0355Amp⋅m2. Turn on the i-axis dipole for 3 seconds,

during 0.7s in each second, to get

     )(~ im = (3⋅0.7)/60 = 0.035 Amp⋅m2

The difference m(i)- )(~ im =0.0005 Amp⋅m2 is to be added to m(2) required for the ( n+1)-st minute.

2.3 Simulation Results

The implementation of the control law (7) assumes a full-state feedback, that can be provided by the Kalman filter.

Matrix A
~

 in (4,4') being constant, the state transition matrix )
~

exp( dtAF ⋅= , with dt given, would be constant as

well, enabling thus the application of the Linear Kalman Filter (LKF).

While adjusting LKF to the LQR controller, it was taken into account, that the TechSat onboard computer (OC) is

unable to support implementation of a standard Kalman filter's algorithmic sequence [6], that implies, specifically,

the whole measurement update phase to be carried out at the times the measurements are referred to. Due to the

excessive time required by OC, this phase was split into 12 parts, each of them to be executed piecemeal, once in

12s. The MGM measurements' sampling time was thus also 12s.

In Graphs 1-6, the LQR performance is shown, with MW fixed, its angular momentum Hw being thus zero. In this

case, the satellite's BF axes are assumed to coincide with the principal axes of its inertia ellipsoid. The initial

conditions for the Truth model, and the dynamical parameters of the satellite are as follows:

f& 0.0001 rad/s

?& -0.001 rad/s

?& 0.0001 rad/s

ϕ 12º.9

θ 3º.5

ψ 11º.9

Hw 0

xxI 1.754 kg.m2
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yyI 1.677 kg.m2

zzI 1.696 kg.m2

 The state vector components in the Truth model are plotted in black, while those of the LKF estimate in red.
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In the next simulation, represented by Graphs 7-12, non-diagonal tensor of inertia is involved both in the Truth

model and in LKF, with inertia products equal to:

xyI 0.015 kg.m2

xzI 0.070 kg.m2

yzI 0.044 kg.m2

The A
~

matrix now being
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(13)

where  I -1  is the inverse of the inertia tensor.
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2.4 Planning the Flight Experiment

Nominally, the TechSat satellite's attitude is controlled by concerted functioning of its 3-axis MGM, 3-axis MTQ,

and the momentum wheel (MW), the latter providing the satellite's stability and also implementing the pitch control.

The nominal MW momentum bias is about -0.42 Nt·m·s. To provide 3-axis stabilization of the TechSat under these

operation conditions, the proportion-plus-derivative COMPASS control law [3] is applied once per second:

 )BB(C)BB(KM measmeas expexp

rr&r&rr
−⋅+−⋅−= (14)

where  M
r

-  control magnetic moment of MTQ,

measmeas B ,B &rr
 -   measured GMF vector and its derivative, as referred to the Body Frame (BF),

expexp B ,B &rr -  expected GMF vector and its derivative, as referred to the Trajectory Frame (TF),

Therefore, in order to test the LQR algorithm, included in the testing sequence should be the phase of slowing down

and stopping the wheel. It should be clear, that this operation would bring about the destabilization of the satellite,

before the control algorithm gets actuated.

Some remarks are to be made, while choosing the test sequence, viz.:

1.  As a result of slowing down and stopping the MW, the satellite gets destabilized, and starts to tumble;

2.  Since LQR controller can be actuated only after LKF initialization, a slow enough satellite's rotation is assumed

here.

The graphs 13-19 display the simulation according to the scenario as follows:

a. Initially, the satellite is 3-axis stabilized, COMPASS-controlled, with Hw nominal;

b. While keeping the COMPASS control on, the wheel is gradually slowed down to the angular   momentum

Hw ≈–0.005 Nt⋅m⋅s within ≈11h ;

c. At  T ≈11h , LKF gets initialized;

d.  d.   At  T ≈27h .8,  LQR controller is actuated.

The matrix A
~

 in (13) was appropriately modified, to take into account non-zero Hw.

As can be seen in the Graphs, the COMPASS control provides acceptable 3-axis stabilization even with Hw as small

as –0.005 Nt⋅m⋅s. After switching to LQR, the attitude converges to the steady-state oscillations similar to those in

Graphs 10-12.
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2.5 Flight Experiments

a. The 1st flight experiment consisted in slowing down the MW under COMPASS control to angular momentum of

–0.05 Nt⋅m⋅s.  The MGM telemetry and the results of its processing are displayed in  Graphs 20 – 30.

The MW angular momentum before and during the experiment is shown in Graph 20. In the Graphs 21-23, the

expected values (GMF model), calculated with IGRF2000 model and SGP4 orbital predictor [3], are plotted in

green, while MGM telemetry – in red.

    As seen, before the experiment the measurements match well with the GMF model. Although referred to 2

different reference frames, TF and BF, respectively, their closeness evidences good 3-axis stabilization of

TechSat by the COMPASS control. During the MW deceleration, the satellite gets destabilized, and later on, by

the same control, resumes stabilization. Graphs 24-30 show the TechSat attitude as estimated by the Extended

Kalman Filter (EKF) of the Ground Estimator (GE) [3]. The GE state vector includes:

ωx ,ωy ,ωz   -  Components of the instantaneous angular velocity of the Body Frame (BF)

                      with respect to Inertial Frame (IF), as referred to BF axes;

ϕ, θ, ψ       -  Euler angles, defining the attitude of the BF with respect to Trajectory Frame

                      (TF) in the order 3 →1 →2   rotation sequence;

bx ,by ,bz      -    components of the MGM bias with respect to BF .
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b. The 2nd flight experiment consisted in slowing down the MW from – 0.01Nt⋅m⋅s to –0.001Nt⋅m⋅s under the

COMPASS control, and testing the onboard LKF. The comparison of the measured GMF components with

expected ones, as seen in the graphs 32-34, displays no perturbations that could testify a destabilization, the

maximum differences between the Y-axis components amounting to as much as 30 to 40 mGAUSS, while those

in X-and Z-axes never exceeding 5-7 mGAUSS. But anyway, throughout the experiment, the MGM

measurements keep in a good correspondence with the GMF model, both in phase and in amplitude. Another

evidence of the attitude smoothness while the MW deceleration is the state vector estimates (graphs 35-40), as

made by GE (in black) and the onboard LKF (in red).  Their patterns differ mainly because of the different

abundance of the measurements involved in the processing.

The conclusion to be made here is that the TechSat didn't get destabilized while slowing down the MW. Yet

without the independent checking, based on a sensor other than MGM, this couldn't be confirmed. As known, the

only sensor fit for such a checking is the onboard camera; but its performance became problematic, and failed in

all the attempts during the experiment in question.
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Another conclusion is that during the MW's slowing down, its coil was creating an additional
magnetic dipole moment along the BF Y-axis that disturbed the respective component of the
MGM measurements.

c. The 3rd flight experiment consisted in stopping the MW, its initial Hw being  –0.001Nt⋅m⋅s. When comparing the

MGM measurements with the GMF model (graphs 43,44,45), they seem to keep the conformity both in the

amplitude and in the phase, as in the previous experiment. But now one prominent distinction with the latter case

can be seen, viz: the spike-shaped perturbations in the measured By, that sometimes amount to 100 mGAUSS, and

even more. Here again, there was no possibility for independent checking of this, seemingly, 3-axis stabilized

attitude with the onboard camera.

Seen is also, that the onboard LKF estimates exceed the limits the linear model can afford.
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3. "NO_WHEEL" Algorithm

3.1 Analytical expression of the No Wheel control law

   The control torque T , to provide the satellite's stabilization without momentum wheel, can be expressed as

follows [2]:

)/Iq + C? -(C T

)/Iq + C? = -(C T
)/Iq + C? = -(CT

 zzzzz

yyyyy

xxxxx

21

21

2'1

'

'

=

 
    (15)

where:

 )',','( zyx ωωωω' -   Instantaneous angular velocity of the Body Frame (BF) with respect to the Trajectory Frame

(TF), as referred to BF axes;

zyx ,q,qq  -  Quaternion components (Euler symmetric parameters) of the BF attitude with respect to TF;

21,CC - Control gains.

 

   Still the required torque (15) cannot be applied to the satellite directly, since, physically, the magnetic control

torque is implemented as a cross-product of the relevant magnetic moment m  built up by the MTQ, and the

environmental GMF vector B :

B m = U × (16)

In the "No Wheel" algorithm, the magnetic moment m  is calculated as,

2|B|
TB = m × (17)

where ),TT,(TT zyx=  .

According to (2), vectors U , T , and B  would always be coplanar (see Fig.1):
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B

 T

torque) control (feasible 
BM = U ×

moment) magnetic (feasible 

 

2B
TB =   M ×

torque) control (required 

(GMF) 

Fig. 1: Magnetic control vector definitions

3.2.  Implementing the No Wheel control law

The technique of the No Wheel implementation, in many respects, is similar to the PWM one, as described in

paragraph 2.2, with some differences. Now the table to be filled out, contains 100×10 lines and 3 columns, its size

always being kept constant. At the same time, the controller decision cycle, or the time interval between two

successive  table fill-outs, typically equal to 100 seconds, can be shortened, when the satellite's attitude changes fast

or, equivalently, when the required control dipole moment, which is calculated each second, gets "too large". The

latter criterion is a matter of trial-and-error choice.

4. Extended Kalman Filter for Attitude Determination
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The inputs to the PMC controller are the satellite's attitude parameters, to be estimated from the MGM

measurements by the Extended Kalman Filter (EKF). As known [6], the algorithmic sequence in the EKF has the

following steps:

4.1 Time Update

1. Given the satellite's attitude state vector estimate Xk at the moment tk, propagate it to the moment tk+1 , by

integrating Euler kinematic and dynamical equations:

Xk(+) → Xk+1(-) (18)

where (-)  and (+)  refer to  a priori  and  a posteriori  estimates, respectively;

2.  Propagate the state covariance matrix:

Pk+1(-)  = F Pk(+) F T  +   Q (19)

where F  is the state transition matrix at  tk , and Q  is the process noise covariance matrix.

4.2 Measurement Update

1.  Calculate the Kalman gain matrix:

Kk+1  =  Pk+1(-) H T  [H Pk+1(-)H T  + R ]-1 (20)

where H  is the measurement matrix, and R  is the measurement noise matrix.

2.  Calculate the state vector error at tk+1:

dXk+1  =  Kk+1  [zk+1 - H Xk+1(-)] (21)

where zk+1  is the measurement vector;

3.  Update the state vector at tk+1 , to obtain its  a posteriori estimate:

Xk+1(-), dXk+1 →  Xk+1(+) (22)

4.  Update the state covariance matrix at tk+1:

Pk+1(+)  =  [I - Kk+1 H] Pk+1(-) [I - Kk+1H]T+ Kk+1 R KT
k+1 (23)

To be fit to any attitude kinematics, including the fast rotation, the time propagation has to be carried out with small

enough step size (0.1s , or so). Furthermore, the whole measurement update phase has to be fulfilled at the times the

measurements are taken.
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As verified in numerous simulations, PMC No Wheel algorithm, based on the control law (15, 17) with

compensation for the steady-state errors, and fed by such a generic EKF, enables a 3-axis stabilization within ±5º

under any initial conditions, no matter how the transition is carried out from the nominal control to No Wheel

control.

5. EKF TechSat Implementation

As in the case with LKF, the TechSat onboard computer (OC) is unable to support a standard implementation of the

EKF algorithm. To install the EKF algorithm in the TechSat OC, EKF elements were properly modified, to adjust it

to the computer capacity at a cost of the universality of the EKF. This modification includes:

a. An increase of the step size to 1s,

b. Splitting the whole measurement update phase into 10 parts, each part being executed once in 10s.

In order to let such a constrained EKF keep pace with the satellite's kinematics, the satellite attitude dynamics has to

be slowed down, and to be henceforth carefully controlled. Once-per-10s control was experimentally found to be a

good choice.

The state vector to be estimated by both the onboard and Ground Station (GS) EKFs, was chosen as follows:

ωx , ωy , ωz    -  Components of the instantaneous angular velocity of the Body Frame (BF) with respect to Inertial

Frame (IF), as referred to BF axes;

ϕ, θ, ψ  - Euler angles, defining the attitude of the BF with respect to Trajectory Frame (TF) in the order  3 →1 →2

rotation sequence;

bx , by , bz   -     components of the MGM bias with respect to BF .

6. Planning the Experiment

The principal considerations to be taken into account, while choosing the test sequence, are similar to those in

paragraph 2.4:

a.  As a result of slowing down and stopping the MW, the satellite gets destabilized, and starts twisting;

 b.  PMC controller can be actuated only after EKF initialization;
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 c.  The modified EKF can converge only in a slow motion case.

As was found out from the simulations, there can be two possible scenarios of switching from nominal control with

MW rotating, to No Wheel control, that comply with these considerations.

6.1 Scenario A

A.1 Initially, the satellite is 3-axis stabilized under the once-per-sec nominal COMPASS control law. The MW is

assumed to maintain the nominal angular momentum

                              Hw  ≈ -0.42 Nt·m·s

A.2.  Slow down MW, while applying the COMPASS control at a once-per-sec rate;

A.3. When Hw ≈  –0.001 Nt·m·s, stop MW and turn off the control, thus bringing the satellite into torque-free

rotation (tumbling);

A.4.  Initialize EKF, and run it for a sufficiently long period, still holding on the torque-free rotation;

A.5.  Turn on the No Wheel algorithm.

6.2 Scenario B

B.1   and   B.2 stages are the same as A.1 and A.2 ones.

B.3. Slow MW down to zero; when Hw is about  –0.005 Nt·m·s, switch COMPASS control over from once-per-1s to

once-per-10s rate.

B.4.  Initialize EKF, and run it for a sufficiently long period, while keeping once-per-10s COMPASS control.

B.5.  Turn off MW, and turn on the No Wheel algorithm

7.   Simulation Results

7.1.   Scenario A simulation

An example of the attitude control simulation according to Scenario A is represented in the graphs 53-59, truth

model plots being plotted in black, while those of the modified EKF – in red. The initial conditions were as follows:

ωx -0.0016 rad/s

ωy -0.0002 rad/s

ωz -0.0023 rad/s

ϕ -40º.9
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θ -27º.0

ψ -32º.7

Hw -0.4178 Nt·m·s

The satellite is assumed to have its BF axes collinear with principal axes of its inertia ellipsoid, its principal

moments of inertia being

xxI         -  1.754 kg.m2

yyI        -  1.677 kg.m2

zzI       -   1.696 kg.m2

In the satellite's dynamics, along with the control torque, the gravity gradient torque was also taken into account. The

control sequence included:

1. COMPASS control phase: 0h ÷ 67h, with the simultaneous momentum wheel's slowing down from Hw  nominal  to

–0.0006 Nt.m.s;

2. Control Torque-free phase: 67h ÷ 78h, with stopping the wheel and EKF initialization;

3. No wheel   control phase:  78h ÷ 305h .

The main results displayed in the graphs are:

The satellite can keep 3-axis stabilization under COMPASS control even with a very low Hw of about  –0.005 Nt.m.s.

The angular velocity components ωx and ωz, reduced to 0.0003-0.0005 rad/s level by the COMPASS control, do not

vary substantially after the MW is stopped; this is an important condition for EKF adequate performance; at the same

time ωy can become twice, or even trice as much.

The smallness of ωx and ωz provides moderate variation of ϕ and ψ angles, which guarantees the convergence of the

No Wheel control.

It takes the satellite about 30h  (≈20 revolutions) to get coarsely 3-axis stabilized, and about twice as much – to

achieve the steady state, with the amplitudes in ϕ, θ, ψ of about 5º.



Appendix A, Technion Final Report on Sub-Contract

A-28



Appendix A, Technion Final Report on Sub-Contract

A-29

7.2. Scenario B Simulation

The control sequence included:

1. COMPASS control phase: 0h  ÷ 78h, with  Hw damping down from the nominal value to ≈–0.0006 Nt·m·s,  and EKF

initialization;

2. No wheel   control phase:  78h ÷ 305h , with stopping MW.

The results obtained in the simulation according to Scenario B, are shown in Graphs 60-66.  The initial conditions

were the same as in the Scenario A simulation.

The main difference between the two simulations consists in a more restrained variation of ωx and ωz, and hence of

ϕ and ψ, during the direct transition from COMPASS to No Wheel control in the Scenario B, so that the satellite

could even keep the 1-axis stabilization during this period of time. The ωy component, meanwhile, gains in the

Torque-free phase as much as 5 times. As for the performance of the No Wheel algorithm, the convergence process

looks similar in both scenarios, and takes approximately equal time, to achieve steady-state stabilization.
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7.3    First Flight Experiment

 Shown in graphs 67-74 are the results of the flight experiment, carried out according to Scenario A. The TechSat

MGM telemetry, accumulated over 35 revolutions, was processed by the Ground Estimator (GE), the relevant plots

of the attitude state vector estimates being put in black. The estimates obtained by the onboard EKF, when available,

are given in red.

As can be seen, at the beginning of the experiment, under the COMPASS control with Hw ≈ -0.05 Nt*m*s (see

Graph 73), the satellite kept 3-axis stabilization, with ϕ, θ, and ψ amplitudes within 3°÷5°. Shortly after turning off

the momentum wheel, at 18050th revolution, a dramatic increase of the satellite's angular velocity components

occurred, mainly in its ωx and ωz components, unlike the simulation. In the Torque-free rotation phase, that lasted

from 18052nd till the beginning of 18065th revolution, this pattern didn't change much. In the No Wheel phase, ωz

having the largest value, the satellite seems to rotate mainly about its nominally nadir-pointing axis.



Appendix A, Technion Final Report on Sub-Contract

A-32

In graph 74, the estimates of the MGM biases, made by GE, are plotted:  X-component - in red, Y- in green, and Z-

in blue. The improbably large values of the MGM biases can be considered as an evidence of the inadequate EKF

performance in the Torque-free and No Wheel phases.

Obviously, with the satellite's angular velocity that large, the estimates provided by EKF can't be considered as

adequate. In addition, visible in the graphs are discrepancies between the estimates of the onboard EKF and GE, that

can be attributed both to the gaps in the MGM telemetry available for GE, and to some differences in the two

implementations of the EKF algorithm.
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Actually, the state vector estimates only reflect the facts that could be stated immediately, comparing the expected

and measured GMF vectors at the different phases of the experiment.  The Graphs 75,76,77 display two sets of data,

pertaining to COMPASS control and Torque-free rotation phases, and Graphs 78,79,80 – to the No Wheel phase.

The expected vectors are plotted in black, while the measured ones – in red.
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7.4    Second Flight Experiment

After fixing the problem with two EKF implementations, the new experiment was staged, to test the possibility of

smooth transition from the weak (once per 10s) COMPASS control to Torque-free rotation as specified in the

Scenario B. Without this transition implemented, it makes no sense to switch to the No wheel control.

The results of this experiment are displayed in graphs 81-88, based on the telemetry that comprises about 40

TechSat revolutions. The switch of the COMPASS control to Free rotation took place at the revolution No.19021.

Again, as in the previous experiment, soon after turning the MW off the tumbling began, as is confirmed by all the

graphs. Now the discrepancies between the graphs pertaining to the onboard EKF and GE performance, are caused

either by the gaps in the MGM telemetry downloaded for processing by GE, or by re-initialization of the onboard

EKF, as in case of the mismatch seen near the revolutions 19020 and 19035.
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8.  Summary and Conclusions

Work was performed with mixed results. On the one hand, the principal aims of the research were not achieved, in

the sense that none of the attempts to stabilize TechSat in actual flight tests by any of the two PMC controllers

available was successful. On the other hand, there are also some important accomplishments that can be of use both

in further experiments with the TechSat, while alive, and in the possible testing of these or similar algorithms on

other satellites. They are as follows:

1. As shown both in the simulations and in the flight tests, the proportional-plus-derivative COMPASS control

law can provide a 3-axis stabilization of the satellite even with a very small momentum wheel's momentum

bias of about   –0.005 Nt.m.s;

2. The algorithmic sequences, involved in the Extended and Linear Kalman filters, were properly modified, to

enable the filters' performance in the TechSat low-capacity onboard computer;

3. The attitude control scenarios were worked out and tested, that provide a smooth transition from the nominal

control, with non-zero momentum bias, via wheel's slowing down and stopping, to a purely magnetic control.



Appendix A, Technion Final Report on Sub-Contract

A-38

   It is quite probable, that both the algorithms would perform well, if they were actuated on the satellite without the

momentum wheel, or with a wheel kept fixed after the satellite's release from the launcher. With regard to the case

at hand, it is known, that neither the TechSat MW itself, nor the whole satellite's electric circuitry have ever been

tested under conditions different from the nominal ones. This resulted in the inability to properly model two main

sources of perturbations:

a. Sudden changes in the MW angular velocity near zero;

b. Additional magnetic dipole created by the MW coil that also can vary by some unpredictable way. Such a dipole,

being collinear with BF Y-axis, would generate parasitic torques, affecting ϕ and ψ angles.

These perturbations affected both the MGM measurements and TechSat attitude during the experiments.

To conclude, one could say, that while TechSat is alive, and with the experience gained, it seems quite feasible to

stage some new experiments that could unravel its, sometimes, enigmatic behavior.
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